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Creep of germanium 

G. C H A U D H R I ,  P. F E L T H A M  
Brunel University, Uxbridge, London, England 

Isothermal creep, as well as the response to incremental stress and temperature changes, 
were studied in germanium single crystals oriented for double slip, in the range 470 to 
700~ The stress-sensitivity of the compressive creep rate 0 In ,//c q In cr is numerically close 
to 3 at low strains, but increases appreciably with deformation. This effect, and a similar 
strain dependence of the activation energy as determined by thermal cycling, are explained 
in terms of the curvature of the creep curves on the basis of Boltzmann's superposition 
principle. The Peierls barrier seems to be an important obstacle to dislocation movement 
at relatively low temperatures, when S-shaped creep curves are observed. Other barriers, 
with greater heights, seem to become increasingly effective above about 550~ Although 
dislocation loops, and the formation and break-up of dipoles were observed by TEM, 
recovery mechanisms involving self-diffusion did not appear to make a substantial 
contribution to the creep within the range of temperatures used. 

1. I n t r o d u c t i o n  
The interest in semiconductor materials, follow- 
ing the discovery of the transistor in 1948, and 
the ensuing availability of germanium and 
silicon crystals of high purity and crystallo- 
graphic perfection, stimulated researches on 
their mechanical properties in the last two 
decades. An extensive review of the work on the 
plasticity and the creep of crystals having the 
diamond lattice was published in 1968 by 
Alexander and Haasen [1 ]. Further work on the 
creep of germanium crystals by Berner and 
Alexander [2] appeared at about the same time, 
and was followed by a spectrum of work on the 
mechanical response of crystals with the 
diamond structure. This included measurements 
of the velocity of dislocations [3-5], work on the 
character of the energy barrier to their motion 
and on the stress dependence of their velocity [6], 
as well as observations of dislocation sources 
activated at high temperatures [7]. 

Several investigations of dislocation structures 
developing in the course of creep [8-11] and 
deformation [12] have been made by trans- 
mission electron microscopy (TEM) in recent 
years, complementing earlier work [13, 14]. 
Except in relation to the new interpretation of 
the mechanism by which dislocations in the 
diamond lattice overcome the Peierls barrier [6] 
no new basic modifications have however been 
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proposed to the semi-empirical model of the 
creep process outlined by Alexander and 
Haasen [1]. The TEM observations have 
confirmed the frequent occurrence of dipoles in 
crept crystals; their function in the creep 
process has not however been fully established. 

The characteristic S-shaped curves obtained 
with such crystals are described by Alexander 
and Haasen [1] by a semi-empirical expression; 
in its derivation they took into account the 
observations that early in the creep the crystal 
"fills up" with dislocations, and that the 
concommitant work-hardening results in a 
"negative feedback", reducing the rate of 
generation and the mean velocity of dislocations 
as the deformation proceeds. 

The assumption of a linear stress dependence 
of the dislocation velocity, and the use of an 
activation energy equal to that governing the 
"lattice friction" associated with the Peierls 
potential, i.e. 1.6 eV in the case of germanium, 
are consistent with the prevailing view that this 
lattice friction is rate controlling in creep. An 
energy barrier would however be expected to 
become "transparent" in creep when the 
temperature exceeds about Uo/25k which, for 
u0 = 1.6 eV, is about 500~ There are in fact 
some indications [15] that higher barriers do 
occur. Also, some empirical assumptions involved 
in the derivation, e.g. the use of an "effective 
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stress" which is uniform throughout the crystal, 
and additive, i.e. equal to the difference between 
the applied stress and an internal "back stress" 
proportional to the square root of the dislocation 
density, is unrealistic [16], as is clear also from 
an inspection of the heterogeneous dislocation 
structure in micrographs obtained by TEM. The 
difficulty is not removed on using a periodic 
rather than a constant "back stress" [17]. 

If  the structural heterogeneity is taken into 
account statistically then, as shown in a more 
recent treatment of creep [18], the main features 
of the process can be described, and the S-shape 
of the curves can be explained, without recourse 
to a constant or periodic "back stress". In view 
of the "slow" movement of dislocations in the 
creep of crystals having the diamond lattice, 
compared with materials with a relatively low 
Peierls potential, creep in germanium seemed 
particularly suitable for re-examination in the 
light of this "diffusional" stochastic model [18 ]; 
to carry out such a study was in fact the main 
object of the present work. More specifically, it 
was intended, firstly, to examine the isothermal 
creep of germanium crystals, including the stress 
sensitivity of the strain-rate as determined by 
incremental loading, the activation energy as 
determined by thermal cycling and, secondly, to 
investigate the structure of crept crystals by 
TEM, and to discuss the theoretical significance 
of the experimental results. 

The "incremental" methods referred to are 
difficult to use with small crystals of low thermal 
conductivity, as there are numerous sources of 
error and, except in [15], they do not seem to 
have been used with semiconductors. It was 
therefore essential to pay special attention to the 
problem of the sensitivity of measurement and 
to the elimination of errors arising, for example, 
in the course of thermal-cycling runs from 
thermal expansion in the equipment. 

2. Experimental 
The germanium crystals used were Sb-doped, 
with 7 x 1013 donors/cm 3, and an initial 
dislocation density of 3 x 103 cm -2, measuring 
0.4 x 0.4 x 1.0 cm. They were oriented for 
double slip, with the long, "compression" axis 
along [1 10]; the rectangular faces were (1 ~ 1) 
and (112). Initially the Schmid-factor for slip 
was 0.41. 

Before being strained in compression, the 
crystals were polished mechanically and chemic- 
ally, as recommended by Berner and Alexander 
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[2]; the chemical polish served to remove the 
worked surface-layer to a depth of about 0.15 
ram. Crystals had a mirror finish and, in general, 
emerged bright from the furnace after creep. 
Deformation in compression took place in a 
continuously evacuated chamber, the specimen 
being sandwiched between two ground zirconia 
rods. The diffusion pump was provided with a 
liquid-air trap, and a controlled leak of high- 
purity argon was used to dilute the residual air 
in the vacuum vessel; the vacuum, as measured 
by a Penning gauge, was 10 -4 torr during runs. 
The end-faces of the crystals were lubricated with 
molybdenum sulphite to minimize barrelling; the 
latter effect was not however important, for 
compressive strains did not as a rule exceed 
about 4 ~ .  Strain was measured with an induc- 
tive transducer. Precautions taken to "eliminate" 
thermalexpansion effects in strain measurements, 
and to assure accuracy of measurement and 
stability of temperature in thermal cycling 
experiments have been outlined before [19, 20]. 
Attainment of thermal equilibrium of the 
specimen following a rapid temperature change 
by 20~ in the range of temperature used, was 
evaluated by two methods, assuming rather 
unfavourable conditions of heat transfer, i.e. by 
radiation only, and was found to take about 1�89 
min. Nevertheless, strain measurements made 
during the first 3 min after the change of the 
temperature within the furnace by 20~ were not 
used in calculations. 

Crystals were allowed to cool in the furnace 
under load, and were then examined by optical 
and electron microscopy. Replicas and thin films 
were used; the films were made from slices cut 
parallel to active slip planes by a combination of 
mechanical polishing [21] and jet-machining 
[22]. 

3. Results and discussion 
3.1. Isothermal creep curves 

Creep curves obtained at a compressive stress 
cr = 485 kg/cm 2 at several temperatures, shown 
in Fig. 1, have the characteristic S-shape, except 
for that obtained at 580~ which, in common 
with the series obtained at 650~ at different 
stress levels (Fig. 2), is approximately logarith- 
mic at first, and nearly linear later in the creep. 
The disappearance of the foot of the "S" 
indicates that the process of "fillling up" with 
dislocations is rather rapid, tending towards 
completion early in a run. 

A solution for the creep rate, given by the 
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Figure l Creep isotherms at a compressive stress of 485 
kg/cm% Temperatures corresponding to letters a, b, c, d, e 
were 580, 545, 520, 495 and 470~ respectively. 
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Figure 3 The strain-rate as a function of time as calculated 
from Equation 1 (curve a), and as obtained from curve 
"e" of Fig. 1 (curre b). 
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Figure 2 Creep isotherms at 650~ at various stresses, 
marked on the curves. 

stochastic model of  creep [18], which yields 
S-shaped creep cruves is 

= ~0[erf(at -~-) - erf(bt-~)] ,  (1) 

where Q, a and b are constant for a given 
isothermal creep test at constant stress. Their 
opt imum values for the representation of an 
experimentally determined creep curve require 
some tedious calculation, and no attempt was 
made to determine the best fit in the evaluation 
of curve (a) in Fig. 3 from Equation 1; for the 
" rough"  fit shown ~0 = 1.1 x 10 -3 min -1, 
a = 4 . 3  rain ~ and b = 2 . 3  rain ~, The error, 
amounting to 15 ~ at 75 rain in relation to the 
points (b) obtained from curve "e"  in Fig. 1, 
could probably be reduced with an optimized set 
of  constants in Equation 1. The activation 
energy determined from the temperature depen- 
dence of the strain-rate at the inflexion points of 
the curves shown in Fig. 1 is 1.5 :k 0.1 eV, 

agreeing with the value of 1.65 eV obtained by 
Shea et at. [23] in the same manner under 
similar conditions. The curves do not however 
seem to converge at a common upper strain limit, 
which detracts rather from the reliability of  this 
"slope" method in determining activation 
energies. 

The parameters a and b in Equation I are 
proportional to u~ exp(�89 T )and  u 1 exp(�89 T ) 
respectively [18], where u 2 and u 1 are the upper 
and lower limit of  values of  the activation 
energies which the energy-barrier distribution 
can comprise at any time during creep. The 
reason for the limitation of the spectrum to a 
band is apparent if one considers that " jumps" 
over barriers less than a certain height ul would 
have already become "exhausted" during the 
period required in loading the material to 
the level of  the creep stress; similarly, jumps 
with retardation times significantly longer than 
the period over which appreciable creep takes 
place are assumed not to make a contribution to 
the strain-rate. Thus, apart  f rom the mathe- 
matical convenience involved in practice, it is 
possible to truncate the physically possible range 
of u-values also at an upper limit u2. 

As a result of the temperature dependence of 
the parameters a and b, the initial, steep, part of  
the strain-rate curve (Fig. 3) approaches the 
ordinate as the creep temperature is increased. 
Eventually this part, and the foot in the strain- 
time curve corresponding to it, cease to be 
resolvable (Fig. 2). The initial part, as exemplified 
by the upper three curves in Fig. 1, are then 
nearly linear. An equation simpler than Equation 
1 may then be used [18]. It is given by 
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= vpb  2 e x p ( -  u * / k T ) .  [1 - (t/too 1, (2) 

and is based on the assumption, somewhat 
idealized, that "filling-up" with dislocations is 
completed during the rapid, unresolvable, stage 
of deformation. The density p in Equation 2 is 
thus constant; it comprises all activatable 
dislocations or parts of dislocations which at the 
time of completion of loading are associated with 
barriers comprised within the range A u  = 
u2 - ul. The "characteristic" activation energy, 
equal to about 25 k T ,  is defined by u * =  
�89 + u2); the limiting retardation time, at 
which the strain-rate becomes equal to zero, and 
beyond which Equation 2 becomes inapplicable, 
is given by 

too -1 = 2 a ( k T / A u )  s i n h ( A u / k T ) ,  e x p ( - u * / k T ) ,  
. . . . .  (3) 

where a, like v in Equation 2, are "atomic" 
frequencies. 

On writing A u  oc ~ - cry, [18], and 
p oc (or - cry)s, [24], one finds that for the near- 
linear part of  the creep curves 

oc (cr - cry) 2 e x p ( - u * / k T ) ,  (4) 

but that the final strain, as attained at t = too, 
is much less dependent on either temperature or 
on "effective" stress (e - ey), as is readily seen 
from the relation 

~(too) = ~ o .  too, (5) 
obtained from Equation 2, where do is the term 
outside the last bracket in Equation 2. 
Equation 2 also shows that it should be possible 
to obtain u* from the temperature dependence 
of the slope of the "linear" parts of isobaric sets 
of  creep curves, such as are shown in Fig. 1. The 
requirement u* z 25 k T  yields, for the mean 
temperature of 800 K, for the results in Fig. 1, 
u* = 1.65 eV. Thus, although the same value 
appears to be associated with the activation 
energy controlling the dislocation velocity, the 
coincidence may be fortuitous in the sense that 
for the onset of significant dislocation movement 
the activation energy for migration would also 
have to satisfy a relation Um z 2 5 k T .  At 
temperatures significantly above urn/25 k barriers 
other than the lattice friction due to the Peierls 
field would however have to become effective, as 
the Peierls field would become "transparent".  At 
such temperatures one should therefore expect 
u* > Urn; this inference is in accord with 
observations by Bell and Bonfield [15]. 

The "high-temperature" creep curves, 
obtained at 650~ (Fig. 2) cannot be represented 
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adequately by Equation 2. However, as before, a 
rather small stress-dependence of the creep is 
found. For  strains in the sharply curved region 
extending to about 8 min, strains corresponding 
to a given time are found to be proportional to 
( e -  60) § where the value cry = 60 kg/cm ~ is 
obtained graphically, by extrapolation of the e/e 
relation for fixed times. The "steady" creep rate, 
at times exceeding about 10 min, has a similar, 
weak, stress dependence. 

3.2. Incremental methods 
The activation energy as determined by tempera- 
ture cycling was found to be 1.6 • 0.1 eV in the 
steep, near-linear parts of the creep curves. In 
the upper, flat, parts higher values were obtained: 
3.5 4-0.3 eV. Fig. 4 shows such a section of  a 
creep curve; the inset represents the region around 
the 3.5 eV point, enlarged ten times. The dotted 
lines, which are shown extrapolated, were used in 
determining the activation energy in this 
transition from 640 to 660~ 
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Figure 4 Determination of activation energies by thermal 
cycling in the upper part of a creep curve. Transitions 
were from 600 to 620, 620 to 640, 640 to 660, 660 to 680 
and 680 to 700~ The first reading, on the extreme left, 
was unreliable. Values in eV. The inset is enlarged • 10. 

Values of the stress-sensitivity of the strain- 
rate, O In ~/8 In e, obtained with an incremental 
stress of ~ 31 kg/cm ~ at a nominal stress of 
436 kg/cm ~, at 500~ are shown in Fig. 5. The 
short lines at the points of transition indicate the 
sense in which the increment was made. The 
enlarged portion of the curve around the last 
"down cycling" point, magnified four times, 
shows the occurrence of an "incubation period". 
By contrast, due to loading on up-cycling 
transients were observed for a few seconds. 
These were ignored in the evaluation of the stress 
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Figure 5 Determination of the stress-sensitivity of the 
compressive strain-rate 0 In i/0 In ~ by stress-cycling. 
The nominal stress was 436 kg/cm 2, the changes :~ 31 
kg/cm ~. T = 500 ~ C. Inset magnification • 4. 
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Figure 6 The stress-sensitivity of the strain-rate as 
determined by stress cycling, as function of strain and 
temperature. 

sensitivity, which was evaluated from the nearly 
straight parts on both sides of  the transition 
period, clearly visible, e.g. in the inset in Fig. 5. 
The dependence of the stress-sensitivity of  the 
strain-rate on the compressive strain and on 
temperature is shown in Fig. 6. 

We shall at tempt to explain the significance of 
the results shown in Figs. 4 to 6 with the aid of  
Equation 2. Although it has been derived for 
specific boundary conditions, and is not there- 
fore an equation of state, we shall nevertheless, 
at first, regard it as such for the present consider- 
ations. We shall also assume that Au/kT is 
sufficiently small to make too, as given by 
Equation 3, effectively stress independent. The 
last bracket in Equation 2 is then dependent only 
on time and temperature. 

In view of the linear relation between ~ and p, 

the Boltzmann superposition principle may be 
used�9 Thus, if at a time t = 0 the strain-rate is 
increased by A~ in an isothermal test, then 

A~ = yAp b~exp(-u*/kT) [1 t - O ]  �9 ~ �9 ( 6 )  

On dividing Equation 6 by Equation 2 ,using the 
relation p a r ( a -  at) ~, and putting t = 0, 
corresponding to the time at which the increment 
is made, one has, for positive stress increments, 
i.e. only for plastic strain, 

A l n ~  [2 ~ ] 1 
; 4 1 n c r -  a - ay " 1 -- (O/too)" (7) 

Now ~y appropriate for the curve shown in 
Fig. 5 was not measured but, in view of its 
temperature dependence through an Arrhenius 
term exp(u*/3 kT), [1, 24] its value was deter- 
mined to be 240 kg/cm 2, using ay = 60 kg/mc 2 at 
650 ~ C, obtained directly from the data in Fig. 2. 
Thus, referring to Fig. 5, where ~ = 436 kg/cm 2, 
a/(cr - cry) = 2.2, so that the magnitude of the 
bracketed term is 4.2 and, as 0 -~- t~ the stress- 
sensitivity would be expected to grow with time. 
This trend, as well as the numerical magnitude 
of the stress sensitivity are thus quite well 
accounted for even in terms of the rather simple 
model used. In the case of  the uppermost curve 
in Fig. 6, a = 187 kg/cm ~ and ~y = 60 kg/cm2; 
the value of the bracketed term in Equation 7 is 
now close to 3.0, a plausible value in view of  the 
trend of the curve at low strains. 

Similarly, for a change in temperature 

Ad rob 2 A exp(-u*/kT) I1 t Z, O] = . . _ ~ j  ( 8 )  

where the "dash"  on t% is to differentiate it 
f rom too, the difference arising from the change in 
temperature. Again, as in the case of Equation 7, 
one finds for t = 0, 

A l n ~  u , [  1 ] 
- k  d T ~ 1  l - CO~to) " (9) 

The increase in the activation energy from about  
1.6 eV early in the test, i.e�9 for O/t~o • t, to over 
twice this value (Fig. 4), thus appears to have the 
same cause as the increase of  the stress-sensitivity 
of  the strain-rate (Figs�9 5 and 6). In the latter 
figure the values are also seen to double approxi- 
mately in the course of  creep. The strain- 
dependence of both parameters does not there- 
fore point to some fundamental change in the 
creep mechanism in the course of  deformation; it 
appears to be largely a consequence of the 
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changing curvature of the creep curve. For  a 
constant, time-independent creep-rate, the com- 
pilation of  creep data by Balasubramanian and 
Li [25] shows that for germanium, silicon and 
indium antimonide the stress sensitivity of the 
creep rate is close to 3; this value is readily 
explained in terms of Equation 7. 

3.3, Induction periods 
The occurrence of transients and induction 
periods following small changes in parameters in 
incremental tests can be explained in terms of 
changes in the distribution of energy-barrier 
levels to dislocation movement [18]. We shall 
illustrate this with reference to transients. 

n(u.t] 

Figure 8 Loops, and bowing "S"-shaped dislocations 
indicative of the mode of formation of loops. Deformed 
5~ at 700~ (111) plane. 

u: u I u2 urea: u 

Figure 7 Displacement of the activation energy distribu- 
tion n(u, t) at a given time, due to the application of a 
stress increment to the crystal. The loss of "states" in the 
"low" energy strip ul' - ul leads to transients. States to 
the right of u2 are "frozen in". 

In Fig. 7 we have represented the u-distribution 
at a given time by the " top hat" in which the 
region to the right of u2 consists of inactive, 
"frozen-in" states, i.e. those unlikely to partici- 
pate in creep during a run. A small increase in 
stress on the specimen will result in a more or 
less, bodily displacement of the "ha t"  to the left, 
e.g. by an amount u l -  u'l indicated in the 
figure. States in the strip above the segment 
u'~ - ul have rather low u-values, and will be 
used up rapidly, giving rise to the observed 
transients. Apart from any changes in the height 
or shape of the distribution, such as would have 
occurred during this period also in the absence of 
the incremental deformation, the status-quo ante 
is thus largely restored. 

3.4. Microstructure 
Characteristic features of the microstructure 
were, firstly, elongated dipoles, secondly, loops, 
which appear to have been formed through the 
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Figure 9 Networks in the (1 1 1) plane. Crystal deformed 
5 ~  at 720~ under a stress of 280 kg/cm ~. <1 10) ap- 
proximately along the direction of the marker. 

pinching-off of dipoles [26] and, finally, net- 
works formed by dislocations belonging to the 
same glide plane (Figs. 8 and 9). Regular net- 
works were not found below about 700~ they 
appear to be a major source of strength when the 
Peierls field is no longer a dominant barrier to 
dislocation movement. 

It appears likely that the shrinkage of dipole- 
generated loops contributes to recovery and, 
hence, may be responsible for the slow, steady, 
creep in evidence in Fig. 2 for example. Whether 
a diffusion controlled shrinkage occurred could 
not be established; an activation energy of about 
3.1 eV would be expected to be rate controlling 
in such a process [19]. The movement of 
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dislocations into dipole configurations does how- 
ever appear to be a mechanism which takes place, 
facilitating recovery through the reduct ion of 
internal  stress fields. 

4. Conc lus ions  
The present results and considerations show that  
the principal  features of the creep of germanium 
crystals can be interpreted satisfactorily in terms 
of the stochastic model proposed in [18]. The 
Peierls barrier seems an effective obstacle to 
dislocation movement  at relatively low creep- 
temperatures;  higher barriers seem to participate 
at high temperatures.  This view finds some 
support  in the literature [15]; the effectiveness of 
the dislocation network as a source of work- 
hardening in creep is also indicated by the 
relatively high stress levels at which the crystals 
oriented for double slip creep at a certain rate, 
compared with similar crystals oriented for 
single slip as used, for example, by Berner and 
Alexander  [2]. The use of the Bol tzmann super- 
posi t ion principle suggests that the high activa- 
t ion energies deduced by thermal  cycling in the 
upper,  plateau, stage of the creep curves may be 
an artefact, i.e. it does not,  in all probabil i ty,  
correspond to recovery mechanisms other than 
those operative at lower strains. 

Tha t  thermally activated shrinkage of dipoles 
may contr ibute  to recovery cannot  be excluded 
as a possibility, it was not  however possible to 
establish the extent to which such a process 
contr ibuted to the creep. 

The parameter  ay, appearing in Equat ion  4 for 
example,  characterizes the width of the distribu- 
t ion of energy barriers to the movement  of 
dislocations;  it cannot  be interpreted in terms 
of a "back  stress" of fixed magni tude  prevailing 
th roughout  the crystal. 
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